Что означает dns?

Рекурсивное разрешение имен

Рекурсивное разрешение имен — это процесс, с помощью которого DNS-сервер использует иерархию зон и делегирований для реагирования на запросы, для которых он не является полномочным.

В некоторых конфигурациях DNS-серверы включают корневые ссылки (то есть список имен и IP-адресов), которые позволяют им запрашивать корневые серверы DNS. В других конфигурациях серверы пересылают все запросы, которые они не могут ответить на другой сервер. Пересылка и корневые указания являются методами, которые DNS-серверы могут использовать для разрешения запросов, для которых они не являются полномочными.

Разрешение имен с помощью корневых ссылок

Корневые ссылки позволяют любому DNS-серверу размещать корневые серверы DNS. После того как DNS-сервер обнаружит корневой сервер DNS, он может разрешить любой запрос для этого пространства имен. На следующем рисунке показано, как DNS разрешает имя с помощью корневых ссылок.

В этом примере происходят следующие события:

  1. Клиент отправляет рекурсивный запрос на DNS-сервер для запроса IP-адреса, соответствующего имени ftp.contoso.com. Рекурсивный запрос указывает, что клиент хочет получить окончательный ответ на запрос. Ответ на рекурсивный запрос должен быть допустимым адресом или сообщением, указывающим, что адрес не найден.
  2. Так как DNS-сервер не является полномочным для имени и не имеет ответа в своем кэше, DNS-сервер использует корневые ссылки для поиска IP-адреса корневого сервера DNS.
  3. DNS-сервер использует итеративный запрос, чтобы запросить у корневого сервера DNS разрешение имени ftp.contoso.com. Итеративный запрос указывает, что сервер будет принимать ссылку на другой сервер вместо определенного ответа на запрос. Так как имя ftp.contoso.com заканчивается на метку com, корневой сервер DNS возвращает ссылку на COM-сервер, на котором размещена зона com.
  4. DNS-сервер использует итеративный запрос, чтобы запросить у COM-сервера разрешение имени ftp.contoso.com. Так как имя ftp.contoso.com заканчивается именем contoso.com, com-сервер возвращает ссылку на сервер Contoso, на котором размещена зона contoso.com.
  5. DNS-сервер использует итеративный запрос, чтобы попросить сервера Contoso разрешить имя ftp.contoso.com. Сервер Contoso находит ответ в данных зоны, а затем возвращает ответ на сервер.
  6. Затем сервер возвращает результат клиенту.

Разрешение имен с помощью пересылки

Пересылка позволяет маршрутизировать разрешение имен через определенные серверы вместо использования корневых ссылок. На следующем рисунке показано, как DNS разрешает имя с помощью пересылки.

В этом примере происходят следующие события:

  1. Клиент запрашивает DNS-сервер для имени ftp.contoso.com.
  2. DNS-сервер перенаправляет запрос на другой DNS-сервер, который называется сервером пересылки.
  3. Поскольку сервер пересылки не является полномочным для имени и не имеет ответа в своем кэше, он использует корневые ссылки для поиска IP-адреса корневого сервера DNS.
  4. Сервер пересылки использует итеративный запрос, чтобы запросить у корневого сервера DNS разрешение имени ftp.contoso.com. Так как имя ftp.contoso.com заканчивается именем com, корневой сервер DNS возвращает ссылку на COM-сервер, на котором размещена зона com.
  5. Сервер пересылки использует итеративный запрос, попросив серверу com разрешить имя ftp.contoso.com. Так как имя ftp.contoso.com заканчивается именем contoso.com, com-сервер возвращает ссылку на сервер Contoso, на котором размещена зона contoso.com.
  6. Сервер пересылки использует итеративный запрос, чтобы попросить сервера Contoso разрешить имя ftp.contoso.com. Сервер Contoso находит ответ в файлах зоны, а затем возвращает ответ на сервер.
  7. Затем сервер пересылки возвращает результат исходному DNS-серверу.
  8. Затем исходный DNS-сервер возвращает результат клиенту.

Примечания

  1. Основатели сети электроники DNS стали долларовыми мультимиллионерами
  2. Сергей Мещанюк в Instagram
  3. DNS вышел на международный рынок — открыты первые магазины в Казахстане
  4. Дмитрий Алексеев в Facebook
  5. Заказы из DNS начали доставлять в «Пятерочки»
  6. Ритейлер техники DNS открыл сеть продуктовых магазинов под брендом «Квартет вкусов»
  7. Основатели сети электроники DNS стали долларовыми мультимиллионерами
  8. Российская таможня задержала миллионы компьютеров, ввезенных топовым электронным ритейлером
  9. Второй розничный продавец электроники и бытовой техники в России — DNS покупает сеть в Петербурге

Как работает DNS

Таким способом в интернете была решена проблема связи доменных имен с реальной системой маршрутизации сети Интернет – IPv4 и IPv6 адресах. Создатели просто добавили функцию справочника сайтов и назвали её DNS.

Интересный факт

Когда интернет распространялся всего на несколько компьютеров, а количество сайтов можно было посчитать вручную, для связи домена и IP компьютера использовался всем известный файл hosts. В нем вручную прописывались адреса web-страниц попарно с адресами серверов, обслуживающих данный домен. В /адресную строку браузера вместо 128.0.0.2 можно было вводить mysite.com и попадать на нужный ресурс. Но когда сеть выросла до необъятных размеров, появилась необходимость создания централизованного и постоянно обновляемого массива. На смену hosts пришёл общий DNS.

Рассмотрим всю цепочку запроса информации о сайте:

  • Вы ввели в адресной строке браузера имя сайта, например yandex.ru.
  • Браузер распознал, что перед ним явно не IP-адрес, а значит его нужно добыть вручную. Обозреватель формирует запрос к наиболее удобному DNS-серверу.
  • DNS-сервер, получив запрос от браузера, запрашивает информацию о сайте по длинной цепочке, доходящей до корневых серверов.
  • После получения отклика, DNS высылает в качестве ответа IP-адрес сервера, к которому принадлежит указанное доменное имя.
  • Браузер направляет вас напрямую по IP.

Мы сказали об обращении к корневым серверам, что было допустимым, но довольно грубым округлением информации о маршрутизации DNS

Корневые серверы

Корневыми серверами называются 13 главных DNS серверов, обслуживающих все существующие сайты в мире. Все корневые серверы находятся в США.

В России работают 9 реплик этих хранилищ, в следующих городах: Москва, Санкт-Петербург, Новосибирск, Екатеринбург и Ростов-на-Дону

В реальных условиях до корневого узла доходит один запрос из тысячи. Если бы каждый запрос браузера приводил к прохождению всей цепочки мировых серверов, мы бы ждали загрузку в десятки раз дольше, а в пиковые моменты вовсе не получали бы ответа от перегрузок. Оказывается, разработчики сделали мощную распределенную систему кэширования данных.

Если вы однажды запросили какой-то домен, его данные сохраняются в кэше сервера ещё очень долгое время. При повторном обращении DNS не станет уточнять IP у других серверов по цепочке, а просто отдаст вам полученный ранее ответ.

Как всё начиналось

Продажа компьютеров в середине 90-х — очень прибыльный бизнес. И если жители европейской части России возили комплектующие из Европы, то на Дальнем Востоке прибыль определялась знанием японского рынка. После дефолта состоялось юридическое открытие компании ДНС, что было вызвано сменой основной парадигмы — вместо сбора компьютеров было решено заняться розничными продажами электроники.

Успешный опыт повлиял на развитие компании, уже через два года в состав сети входило 15 магазинов (не только на Дальнем Востоке). К 2011 году было открыто 185 магазинов, к 2013 — 700. При этом компания запустила производство собственной техники. Помимо небольших магазинов, в городах России стали появляться и крупные супермаркеты с большим ассортиментом. В данный момент количество магазинов превышает 1,5 тысячи.

С 1998 по 2005 год ДНС был максимально локальным явлением, осуществляя продажи в одном магазине.

Структура доменного имени

Вместо обычных имен компьютеров, которые состоят из одного слова в системе DNS используются доменные имена. Имя компьютера состоит из нескольких частей, которые отделены друг от друга точками. Например, веб-сервер сайта о Мобильной связи и Технологиях имеет следующие имя www.zvondozvon.ru. Имя состоит из следующих частей ru это домен верхнего уровня, следующий домен отделён от него точкой zvondozvon домен второго уровня, и последний компонент www это имя компьютера в домене второго уровня.

Корневой домен

Важным элементом доменного имени, которое обычно не пишут, является корневой домен, он указывается точкой в конце. Если вы не укажете точку, то ничего страшного не произойдет, она подразумевается в конце каждого доменного имени.

Дерево доменных имен

Доменные имена образуют дерево. Корнем дерева является корневой домен, который представлен точкой. Затем идут домены верхнего уровня, которые бывают трех типов:

  1. Домены для различных типов организаций, которые используются, как правило внутри США (org, com, net). Домен org для некоммерческих организаций, com для коммерческих организаций, net для организации связанных с компьютерными сетями, есть также и другие домены.
  2. Тип доменов верхнего уровня, домены для стран. Каждая страна имеет свой домен. Домен Россия ru, домен Великобритании uk, и относительно недавно появились новые типы доменов верхнего уровня в которых можно использовать не только символы английского алфавита. Для России это домен рф.
  3. Затем идут домены второго уровня, например cisco.com, yandex.ru или яндекс.рф русскими буквами.
  4. На третьем уровне могут находиться, как домены следующего уровня их называют поддомены или адреса компьютера в домене второго уровня. Например, в домене yandex.ru есть компьютеры с адресами www.yandex.ru веб-сервер компании yandex, maps.yandex.ru сервер яндекс карт, такси.yandex.ru сервер яндекс такси и большое количество других серверов.

Доменная зона

Важным понятием в системе DNS является доменная зона. Это запись адресов всех компьютеров и всех поддоменов в некотором домене.

Корневая доменная зона содержит записи всех поддоменов первого уровня (org com net ru uk рф). Зона ru содержит записи всех доменов второго уровня (yandex urfu), зона urfu.ru записи всех поддоменов и всех компьютеров в домене urfu, и вот здесь еще показаны две отдельные зоны для разных институтов urfu, институт естественных наук (ins) и институт математики и компьютерных наук (imkn). Эти зоны содержат DNS-записи, о компьютерах соответствующих институтов.

Доменная зона является некоторым аналогом файла itc/hosts только в ней содержится не вся информация об именах компьютерах в сети, а некоторый ее фрагмент. Доменные зоны распределены по серверам DNS. Одну и ту же доменную зону может обслуживать несколько серверов DNS.

Например, корневую зону обслуживают больше всего серверов, так как к ним больше всего запросов. Все корневые серверы DNS содержат одинаковые записи. Зону ru также обслуживает несколько серверов DNS, у которых одна и та же база данных записи и доменов второго уровня.

Необязательно иметь выделенные DNS сервер для каждой доменной зоны, например DNS-сервер urfu может обслуживать зоны urfu.ru и ins.urfu.ru, а институт математики и компьютерных наук может иметь свой выделенный DNS сервер, который будет обслуживать зону imkn.urfu.ru.

Важным понятием в системе DNS является делегирование. Например DNS-сервер urfu отвечает за зону urfu.ru, но только часть информации об этой зоне хранится непосредственно на этом сервере, то что относится к urfu.ru и ins.urfu.ru. А для зоны imkn.urfu.ru создан отдельный сервер, таким образом сервер urfu.ru делегирует полномочия управления под доменом imkn.urfu.ru другому серверу. Чтобы было возможно делегирование на DNS сервере urfu.ru делаются соответствующие конфигурационные записи, которые указывают на DNS-сервер ответственный за зон, в нашем случае imkn.urfu.ru.

Инфраструктура DNS

Инфраструктура системы доменных имен состоит из следующих компонентов.

Дерево серверов DNS, которые мы рассмотрели выше, клиент DNS это как правило наш компьютер, и сервер разрешения имен DNS по-английски его называют DNS resolver, он получает запрос от клиента и выполняет поиск необходимого ip-адреса в дереве доменных имен.

Проверка проблем с рекурсией

Чтобы рекурсия работала успешно, все DNS-серверы, используемые в пути рекурсивного запроса, должны иметь возможность отвечать и пересылать правильные данные. Если это не так, рекурсивный запрос может завершиться ошибкой по одной из следующих причин:

  • Время ожидания запроса истекло, прежде чем его можно будет завершить.

  • Сервер, используемый во время запроса, не отвечает.

  • Сервер, используемый во время запроса, предоставляет неверные данные.

Начните устранение неполадок на сервере, который использовался в исходном запросе. Проверьте, пересылает ли этот сервер запросы на другой сервер, изучив вкладку серверы пересылки в свойствах сервера в консоли DNS. Если флажок включить серверы пересылки установлен и в списке присутствует один или несколько серверов, этот сервер перенаправляет запросы.

Если этот сервер пересылает запросы на другой сервер, проверьте наличие проблем, влияющих на сервер, на который сервер пересылает запросы. Чтобы проверить наличие проблем, см. раздел . Когда этот раздел предписывает выполнить задачу на клиенте, выполните его на сервере.

Если сервер находится в работоспособном состоянии и может пересылать запросы, повторите этот шаг и проверьте сервер, на который сервер пересылает запросы.

Если этот сервер не перенаправляет запросы на другой сервер, проверьте, может ли этот сервер запрашивать корневой сервер. Для этого выполните следующую команду:

  • Если сопоставитель возвращает IP-адрес корневого сервера, возможно, имеется разорванное делегирование между корневым сервером и именем или IP-адресом, который вы пытаетесь разрешить. Следуйте инструкциям по , чтобы определить, где находится неработающее делегирование.

  • Если сопоставитель возвращает ответ «запрос на превышение времени ожидания сервера», проверьте, указывает ли корневые ссылки на работоспособность корневых серверов. Для этого используйте . Если корневые ссылки указывают на работающие корневые серверы, возможно, возникла проблема с сетью или сервер может использовать расширенную конфигурацию брандмауэра, которая не позволяет арбитру конфликтов запрашивать сервер, как описано в разделе . Также возможно, что рекурсивное время ожидания по умолчанию слишком мало.

Тестирование неработающего делегирования

Начните тесты в следующей процедуре, запросив допустимый корневой сервер. Этот тест позволяет выполнить запрос всех DNS-серверов из корня к серверу, который тестируется для неработающего делегирования.

  1. В командной строке на тестируемом сервере введите следующее:

    Примечание

    Тип записи ресурса — это тип записи ресурса, для которой был выполнен запрос в исходном запросе, а полное доменное имя — полное доменное имя, для которого выполнялись запросы (заканчивающиеся точкой).

  2. Если ответ содержит список записей ресурсов «NS» и «A» для делегированных серверов, повторите шаг 1 для каждого сервера и используйте IP-адрес из записей ресурсов «A» в качестве IP-адреса сервера.

    • Если ответ не содержит запись ресурса NS, делегирование будет разорвано.

    • Если ответ содержит записи ресурсов «NS», но нет записей ресурсов «A», введите » задать рекурсию» и выполните запрос по отдельности для записей ресурсов «a» серверов, перечисленных в записях NS. Если вы не нашли по меньшей мере один допустимый IP-адрес записи ресурса «A» для каждой записи ресурса NS в зоне, то у вас есть неработающее делегирование.

  3. Если вы определили, что вы используете неработающее делегирование, исправьте его, добавив или обновив запись ресурса «A» в родительской зоне, используя допустимый IP-адрес для соответствующего DNS-сервера для делегированной зоны.

Просмотр текущих корневых ссылок

  1. Запустите консоль DNS.

  2. Добавьте или подключитесь к DNS-серверу, который не прошел рекурсивный запрос.

  3. Щелкните правой кнопкой мыши сервер и выберите пункт Свойства.

  4. Щелкните корневые ссылки.

Проверьте наличие базовых подключений к корневым серверам.

  • Если правильно настроены корневые ссылки, убедитесь, что DNS-сервер, используемый в разрешении имен с ошибками, может проверить связь с корневыми серверами по IP-адресу.

  • Если корневые серверы не отвечают на проверку связи по IP-адресу, IP-адреса для корневых серверов могли измениться. Однако нередко можно увидеть перенастройку корневых серверов.

Зачем в интернете нужны DNS-серверы

На заре существования всемирной сети подключенных компьютеров было немного, а пользователями были опытные специалисты.

Каждую точку подключения (клиентский компьютер) идентифицировали в сети при помощи IP-адреса. Что расшифровывается как Internet Protocol Address – адрес интернет-протокола.

IP-адрес выглядит примерно, как номер сотового телефона:

  • 59.109.189
  • 59.110.48
  • 59.109.207

Со временем количество пользователей интернета значительно увеличилось и тогда, для облегчения задачи серфинга в сети, было предложено ассоциировать цифровые IP-адреса сайтов с вербальными (словесными) доменными именами.

Чтобы обеспечивать назначение каждому цифровому IP-адресу веб-сайта удобного для восприятия имени была создана глобальная система доменных имен.

По-английски Domain Name System или сокращенно DNS.

Система доменных имен представляет собой распределенную инфраструктуру из большого числа серверов, расположенных по всей планете. Эта серверная структура DNS выстроена по принципу иерархического подчинения.

  • Сервера доменных имен верхнего уровня – COM, RU и так далее.
  • Сервера со списками доменных имен второго уровня – google.com.
  • Сервера доменов третьего уровня – api.google.com.

Самую верхнюю позицию в иерархии занимают корневые DNS-сервера, на которых хранятся списки серверов доменных имен верхнего уровня. Корневых ДНС-серверов во всем мире чуть более 10 штук.

Говоря простыми словами, система доменных имен функционирует, как глобальный адресный стол для всемирной сети.

В локальных отделениях DNS хранятся ассоциированные с доменными именами IP адреса сайтов, относящиеся к данному региону. Если на местном сервере DNS оказывается невозможно найти адрес сайта по запрашиваемому доменному имени, запрос делегируется к следующему уровню системы.

И вот таким образом поиск IP-адреса по заданному браузером доменному имени происходит до тех пор, пока нужный сайт не будет обнаружен на одном из ответственных за его хранение серверов DNS.

Пример работы, как браузер находит сайт

Чтобы понять, как все это работает, давайте рассмотрим на конкретном примере поиска какого-либо сайта.

Такой достаточно сложный алгоритм поиска IP адреса сайта по доменному имени получается потому, что сегодня интернет-ресурсов во всемирной сети уже более миллиарда.

Hosts-файл

Чуть выше было упомянуто, что записи об адресах сайтов могут находиться в операционной системе компьютера. Действительно, среди системных файлов имеется документ по имени Hosts.

Это обычный текстовый файл, но не имеющий расширения txt. Дело в том, что Hosts-файлы могут присутствовать на компьютерах и других операционных систем, а не только Windows.

На альтернативных OS расширения файлов могут не совпадать, поэтому договорились использовать текстовый документ Hosts вообще без указания типа файла.

Hosts-файл содержит список сопоставления доменных имен известных пользователю интернет-ресурсов и их IP-адресов.

127.0.0.1 localhost

Сначала прописывается IP-адрес, а затем название интернет-ресурса.

Считается, что Hosts-файл является архаизмом. Этот файл использовался в прежние времена, когда компьютеры имели малую мощность и использовалась любая возможность ускорить процессы.

Указанная выше запись из Hosts-файла означает, что по такому IP адресу находится сам пользовательский компьютер. В большинстве случаев на современных персональных компьютерах эта запись является единственной.

Иногда продвинутые пользователи, для того, чтобы заблокировать посещение какого-либо сайта, добавляют в Hosts-файл запись, в которой сопоставляют доменное имя нежелательного ресурса с IP-адресом компьютера.

В случае запроса браузера по данному доменному имени происходит обращение к локальной системе и перейти на сайт оказывается невозможно.

Например, пользователь не хочет, чтобы его дети посещали какие-либо сайты. Тогда можно отредактировать Hosts-файл и указать в качестве IP-адреса нежелательного сайта локальный хост.

Hosts-файл иногда используется хакерами для того чтобы перенаправить пользователя на фишинговые страницы. Если пользователь посетит зараженный сайт и загрузит оттуда вирус, то этот вирус может произвести изменения в записях Hosts-файла.

Например, доменному имени надежного онлайн-банка будет ассоциирован IP-адрес мошеннического ресурса. Набрав в браузере адрес банка, пользователь попадет на сайт мошенников и потеряет свои деньги.

Сегодня Host-файл потерял свою значимость и может вообще не содержать никаких записей. Это никак не отразится на функциональности компьютера и возможностях работы в интернете.

Comodo Secure DNS

Comodo Secure DNS — это служба разрешения доменных имен, которая разрешает ваши DNS-запросы через всемирную сеть избыточных DNS-серверов компании. Это может обеспечить более быструю и надежную работу в Интернете, чем использование DNS-серверов, предоставляемых вашим Интернет-провайдером. Также не требуется установка аппаратного или программного обеспечения. Серверная инфраструктура Comodo Secure DNS в настоящее время охватывает 15 мест (узлов) и пять континентов по всему миру . Это означает, что большинство из них будет иметь DNS-сервер поблизости, что приведет к увеличению скорости интернета.

Comodo Secure DNS также обеспечивает безопасность пользователей благодаря функции фильтрации вредоносных доменов. SecureDNS ссылается на блокирующий список вредоносных сайтов в режиме реального времени (фишинговые сайты, сайты с вредоносными программами, сайты-шпионы и припаркованные домены и др.) И предупреждает посетителей всякий раз, когда они пытаются получить доступ к сайту, содержащему потенциально опасный контент. Поскольку количество вредоносных атак растет день ото дня, наличие этой защиты гарантирует, что мы можем выходить в Интернет, не сталкиваясь с его скрытыми опасностями. В целом, мне очень нравится Comodo Secure DNS и я считаю его одним из лучших провайдеров DNS.

Плюсы:

  • Бесплатно для личного использования
  • Охватывает 5 континентов
  • Защищает от фишинговых атак, вредоносных сайтов, шпионских сайтов и многого другого

Минусы:

Не так надежно, как первые три

IP-адреса для DNS: 8.26.56.26, 8.20.247.20

Посетить: веб-сайт

Как работает DNS-система

Наглядно работа системы описана на схеме ниже.

Фактически браузеру для подключения к серверу нужен только IP-адрес. Но где его взять, если пользователь указал только символьное имя (домен)?

  • Браузер сначала обращается к файлу hosts на ПК.
  • Если в файле нет информации, он переадресует обращение к системе DNS.
  • Первые на пути у него DNS-серверы текущего интернет-провайдера (компании, обеспечивающей подключение к глобальной сети). При наличии актуального IP сервера хостинга браузеру будет сразу предоставлен нужный адрес узла, и он подключится к сайту напрямую.
  • Если данных нет, DNS-сервер провайдера передаст запрос к ближайшим доступным корневым DNS-серверам (их существует 13 основных, но с учётом реплик – более 120 шт., чьи базы данных идентичны и постоянно актуализируются между собой, чтобы снизить нагрузку от запросов, применяют кэширование, в РФ работает несколько реплик, например, в Москве, СПб, Ростове-на-Дону и в Новосибирске).
  • Корневой сервер или его реплика работает только с доменами первого уровня. То есть возвращает только адрес DNS-сервера соответствующей доменной зоны. Конкретных IP-адресов сайтов он не предоставляет.
  • Теперь провайдер запрашивает адрес сайта у DNS-сервера выбранной доменной зоны.
  • DNS-сервер зоны тоже не знает конкретных IP-адресов сайтов, но знает, где их искать, ведь в ресурсных записях домена обязательно указаны адреса NS-серверов.
  • Простой пример: вы выбрали в качестве хостинга Bluehost и указали в качестве NS-серверов ns1.bluehost.com (основной) и ns2.bluehost.com (запасной/резервный). Поэтому в ответе на запрос DNS-сервер зоны RU вернёт строку ns1.bluehost.com.
  • Теперь провайдер обращается уже к серверу ns1.bluehost.com и получает конкретный IP-адрес сервера с сайтом.
  • Адрес узла возвращается браузеру и происходит прямое подключение к хостингу.
  • Если на одном сервере размещается сразу несколько сайтов (например, если это shared-хостинг), то специальное программное обеспечение (web-сервер) перенаправляет запрос к нужному каталогу на основании идентификатора – доменного имени.

DNS и интернет

То, что я описывал выше, – всего лишь очень простой пример, где было несколько переменных: пользователь и его браузер, DNS-сервер, который распределяет домены и адреса, и некий удаленный сервер, на котором хранится информация. В реальности же эта схема может быть намного сложнее, потому что на весь мир не может быть одного DNS-сервера. Их тысячи, миллионы, а может, еще больше. Все они связаны между собой и постоянно обмениваются информацией.

Если какой-то пользователь хочет подключиться к сайту, то его компьютер сначала обращается к ближайшему DNS-серверу, чтобы тот сделал переадресацию к корневому – тому, где хранятся данные о других серверах (их, напомню, очень много и все они определенным образом связаны).

Корневой сервер может сделать еще несколько запросов, прежде чем он доберется до нужного DNS, где и будет храниться сам искомый адрес. Схема действительно довольно сложная, потому что сам интернет очень обширен, можно сказать, безграничен.

Также при обмене данными очень важную роль могут играть NS-серверы хостинга, на котором расположен тот или иной сайт. NS-серверы могут отдавать информацию об IP-адресах всех сайтов, которые есть на хосте. Хостинги могут содержать в себе колоссально огромное количество сайтов. Порой это количество исчисляется сотнями и тысячами. К каждому такому сайту ведет собственная ниточка, которую и проводят NS-серверы хостинга.

Рассмотрим простой пример с iklife.ru. Когда вы вводите этот адрес в строку своего браузера, происходит примерно это.

Рассмотрим этот процесс более подробно.

  1. Сначала ваш компьютер или любое другое устройство подключается к DNS-серверам провайдера. Туда он передает домен, в нашем случае это iklife.ru.
  2. Далее, этот домен передается от DNS провайдера к корневому серверу, где уже, в качестве выдачи, будут NS-адреса хостинга, к которым был привязан домен. Об этом я уже рассказывал, домен можно привязать к NS-серверам.
  3. Далее, домен передается к этим самым NS-серверам, которые мы получили от корневого DNS-сервера. Уже от NS мы получаем IP-адрес нужного нам сервера.
  4. Этот самый адрес передается к компьютеру, после чего этот компьютер подключается к серверу. От сервера передается информация в виде содержимого сайта или чего-то еще.

Примерно так работает вся эта система, когда мы говорим про работу веб-ресурсов. В принципе, ничего сложного здесь нет. Достаточно просто понять суть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector